
1

Become a MongoDB DBA:
Bringing MongoDB

to Production

2

3

Table of Contents
1. Introduction 4

2. Choosing the right MongoDB version 5
2.1. Topologies 5
2.2. Storage engines 6

3. Securing MongoDB 8
3.1. Enable authentication 8
3.2. Authorize users by roles 8
3.3. Add a replication keyfile 9
3.4. Does your application require public access? 9
3.5. Enable firewall rules or security groups 10
3.6. Enabling SSL 11

4. Monitoring and Trending 12
4.1. Host metrics 12
4.2. dbStats metrics 12
4.3. serverStatus metrics 13
4.4. Oplog metrics 14
4.5. MongoDB locks 16
4.6. WiredTiger metrics 18

4.6.1. Locks and concurrency 18
4.6.2. Transactions 18

5. Backup and Recovery 20
5.1. Logical backups 20
5.2. Physical backups 20
5.3. Sharded MongoDB backups 21
5.4. Backup strategies 21

5.4.1. Offsite backups 21
5.4.2. Backup encryption 22
5.4.3. Recovery 22

6. Scaling MongoDB 23
6.1. Read scaling 23
6.2. Reading from a secondary 24

6.2.1. Setting read preference 25
6.2.2. Reading from a secondary in a shard 26

6.3. MongoDB write scaling (sharding) 26
6.3.1. Sharding tier 26
6.3.2. Shard tier 27
6.3.3. Managing shards 28

7. Conclusion 29

8. About ClusterControl 30

9. About Severalnines 30

10. Related Resources from Severalnines 31

4

MongoDB is a document data store that has been around for almost a decade already.
During the past fi ve years MongoDB evolved into a mature product that features
enterprise grade features like scalability (sharding), security and resilience. Not all of
these features in the MongoDB Enterprise version are generally available for the public.
However with the recent improvements made on the Percona version of MongoDB,
some of these feature are now available. With the addition of third party components
and storage engines, like RocksDB, the ecosystem of MongoDB has become a
fl ourishing one.

In this whitepaper we will shed a light on choosing the right version for your cluster and
cover the basics of preparing MongoDB for production.

Introduction

5

There are quite a few versions, implementations and topologies to choose from.
MongoDB itself is, like MySQL, an open source platform that anyone can use and
improve. This means that various parties have created their own versions or additions to
it. A brief overview could be made like this:

Vendor Open source Notes Cost
MongoDB
Community MongoDB yes free

MongoDB
Enterprise MongoDB no paid

MongoDB
Atlas MongoDB no Enterprise

cloud solution paid

Percona Server
for MongoDB Percona yes

Additional
enterprise
features

free

As you can see in the table above, MongoDB is the dominant vendor, off ering both the
community and enterprise versions. Percona enriches the MongoDB community version
with some enterprise grade features like audit logging and the memory engine, that are
also present in the MongoDB enterprise version. The two versions are really comparable
with each other.

Apart from these options for bare bones infrastructures, there are many cloud vendors
that off er pre-installed MongoDB database hosts and most of these reside on large
cloud providers like AWS, Google and Azure. These cloud instances are in no way
comparable to MongoDB Atlas, which off ers a complete solution from the cloud
interface. MongoDB Atlas not only off ers deployment of your nodes in AWS, but also
snapshots of your data stored in Amazon S3. Alternatives to the MongoDB Atlas service
are Rackspace ObjectRocket and Severalnines NinesControl.

2.1. Topologies
After you have chosen the right vendor and version, it is also essential to choose your
topology before deployment. Depending on your topology you need to alter or change
your deployment and confi guration strategy. MongoDB basically supports three major
types of toplogies: standalone, replicaSet and sharded.

We can simply start with the single standalone MongoDB instance. This is comparable
to the MySQL single instance and naturally this topology will not have any data
replicated from one host to another.

Choosing the right MongoDB
version

6

Once we replicate data between nodes, this is called a ReplicaSet in MongoDB.
MongoDB will ensure transactions will be written to the oplog (comparable with the
MySQL binlog) in more than just the primary (master): also to secondary nodes (slaves).
You can confi gure the transaction to be confi rmed by the primary after writing to it.

For a ReplicaSet we need at least two instances (one primary and one secondary) to
confi rm a write, but it is advisable to use at least three. A MongoDB ReplicaSet can
best be compared to a hybrid between traditional MySQL replication and Galera
synchronous replication.

The other topology to mention is MongoDB Sharding. MongoDB will be able to
shard based upon the data stored in the Confi g Servers, and route the queries to the
correct shards. In the picture below, the Confi g Servers and Shards are all independent
ReplicaSets.

2.2. Storage engines
Just as important as choosing your topology, is the choice of storage engine.
MongoDBs default storage engine used to be MMap up until version 3.0. MMap is
comparable to MyISAM in structure: it is a fi le based storage engine that (heavily) relies
on fi lesystem caching. The benefi t is the low overhead of the storage engine, but just
as with MyISAM, locking is performed on collection level (or table level in MySQL).
This is due to the fi le based storage system, where the writing thread holds the lock
on the collection. This means that any MongoDB primary that receives a heavy write

Mongos

Client tier Sharding tier

Web/Application
Server

Requests

Users

MongoDB MongodB

MongodB

Read/write Read/write

Read/write

Sharding tier

Shard 1
Primary

Shard 1
Secondary

Shard 1
Secondary

Shard 2
Primary

Shard 2
Secondary

Shard 2
Secondary

Replication

Replication

Client Application
Driver

Primary

Secondary Secondary

Writes Reads

Replication Replication

7

workload on one schema or collection is bound have contention issues. The structure
itself is B-tree based and as it is appending inserted data to the fi le, it is generally over
allocating space on disk.

The default storage engine as of version 3.0 is WiredTiger. This storage engine has
overcome the biggest shortcoming of MMap: it features document level locking. This
means multiple clients can write data to the same collection now, as long as they don’t
attempt to write to the same document. WiredTiger is, just like MMap, B-tree based but
is able to support LSM-trees. It supports compression and index prefi x compression as
well, and this performs reasonably well due to the choice of using Snappy as default
compression. WiredTiger is slower in pure performance than MMap, but thanks to its
document locking in production workloads, it is often faster. We would say WiredTiger
is a good all round storage engine.

RocksDB has been developed by Facebook to solve fl ash based storage issues. As
SSDs behave diff erently to traditional (spinning) harddisks, the approach of a high
performance datastore had to be diff erent. On fl ash storage a read is a very inexpensive
and fast operation as a whole cell can be read instantly, while a single write operation is
considered an expensive operation as it needs to read, erase, modify and then write the
data back to a new place in the storage. This means fl ash based systems will perform
less good when writing small pieces of random data. Because of this nature, RocksDB
is an append-only storage system that uses a Log Structured Merge tree (LSM-tree) to
store the data in various layers and merges these data sets to a lower level to maintain
the full dataset. The benefi t of this storage engine is that it has excellent insert, update
and delete performance. It also performs really well on time-bound data (last 50
messages in your inbox, range queries) but has poor performance on queries that select
on other criteria.

Another storage engine would be the Percona TokuDB engine. This engine is based
upon fractal trees and should give a much higher insert and update performance than
WiredTiger. Percona recently stopped development on this storage engine, so we would
advise against using this engine in production.

Also, unless you do not need massive insert performance and have fairly common
query patterns, we would recommend to stick to the WiredTiger storage engine as it
delivers reasonable performance and is tunable.

RocksDB Architecture

Active
Memtable

(4MB)

Immutable
Memtable

(2MB)

Write

Compaction

Memory

Disk

Level 1
(10MB)

Level 0

Level 2
(100MB)

Info Log

MANIFEST

CURRENT

8

MongoDB comes with very little security out of the box: for instance, authorization is
disabled by default. In other words: by default anyone has root rights over any database.
One of the changes MongoDB applied to mitigate risks was to change its default
binding to 127.0.0.1. This prevents it from being bound to the external ip address, but
naturally this will be reverted by most people who install it.

Recently unsecured MongoDB instances have been subject to ransomware. This
ransomware scans for unprotected MongoDB instances that are open to the internet
and accept any incoming connection. Once the attackers have taken control over the
MongoDB instance, most of them hijack the data by copying it onto their own storage.
After making a copy they will erase the data on the server, and leave a database with
a single collection demanding ransom for the data. In addition, some also threaten
to erase the backup that they hold hostage if they don’t get paid within 3 days. Some
victims, who allegedly paid, in the end never received their backup.

As you can see, securing your MongoDB instance is just as vital as securing any
other database! You can secure MongoDB by simply enabling authentication and
authorization, only allow specifi c hosts to connect and use SSL.

3.1. Enable authentication
This is the easiest solution to keep unwanted people outside: simply enable
authentication in MongoDB. To explicitly do this, you will need to put the following lines
in the mongod.conf:

If you have set the replication keyfi le in the mongod.conf, you will also implicitly enable
authentication.

3.2. Authorize users by roles
Even if you have enabled authentication, don’t just give every user an administrative
role. This would be very convenient from the user perspective as they can literally
perform every task thinkable, and would not depend on an administrator to execute a
task on their behalf. But for any attacker, this is just as convenient: as soon as they have
access to one single account, they also immediately have the administrative role.

MongoDB has a diversity of roles, and for any type of task an applicable role is present.
Ensure that the user carrying the administrative role is a user that isn’t part of the
application stack. This should slim down the chances of an account breach to result into
disaster.

Securing MongoDB

1 security:
2 Authentication: on

9

When provisioning MongoDB from ClusterControl, we deploy new MongoDB
replicaSets and sharded clusters with a separate admin and backup user.

3.3. Add a replication keyfi le
As mentioned earlier, enabling the replication keyfi le will implicitly enable authentication
in MongoDB. But there is a much more important reason to add a replication keyfi le:
once added, only hosts with the fi le installed are able to join the replicaSet.

Why is this important? Adding new secondaries to a replicaSet normally requires the
clusterManager role in MongoDB. Without authentication, any user can add a new
host to the cluster and replicate your data over the internet. This way an attacker could
silently and continuously tap into your data.

With the keyfi le enabled, the authentication of the replication stream will be encrypted.
This ensures nobody can spoof the ip of an existing host, and pretend to be another
secondary that isn’t supposed to be part of the cluster. In ClusterControl, we deploy all
MongoDB replicaSets and sharded clusters with a replication keyfi le.

3.4. Does your application require public access?
If you have enabled MongoDB to be bound on all interfaces, you may want to review
if your application actually needs external access to the datastore. If your application is
a single hosted solution and resides on the same host as the MongoDB server, it can
suffi ce by binding MongoDB to localhost.

This requires the following line to be added/changed in the mongod.conf and a restart
is required:

In many hosting and cloud environments with multi-tenant architectures, applications
are put on diff erent hosts than where the datastore resides. The application then
connects to the datastore via the private (internal) network. If this applies to your
environment, you need to ensure to bind MongoDB only to the private network.

MongoDB running on the
same host as application

1 net:
2 bindIp: 127.0.0.1

10

This requires the following line to be added/changed in the mongod.conf and a restart
is required:

3.5. Enable fi rewall rules or security groups
It is a good practice to enable fi rewall rules on your hosts, or security groups with cloud
hosting. Simply disallowing the MongoDB port ranges from outside will keep most
attackers outside.

There would still be another way to get in: from the inside. If the attacker would gain
access to another host in your private (internal) network, they still could access your
datastore. A good example would be proxying tcp/ip requests via a http server. Add
fi rewall rules to the MongoDB instance and deny any other host except the hosts
that you know for sure need access. This should, at least, limit the number of hosts
that could potentially be used to get your data. And as indicated in Tip 1: enable
authentication, even if someone proxies into your private network they can’t steal your
data.

Also, if your application does require MongoDB to be available on the public interface,
you can limit the hosts accessing the database by simply adding similar fi rewall rules.

1 net:
2 bindIp: 127.0.0.1,172.16.1.234

MongoDB connected to application
via internal network (172.16.1.xxx)

Web server

Web server

MongoDB
Primary

MongoDB
Secondaries

11

3.6. Enabling SSL
Enabling encryption on database communication has become a necessity over the
past few years, especially when databases are deployed in the cloud. This accounts for
both internal and external traffi c. MongoDB supports encryption of both client-server
connection and intra-cluster communication.

Once you enable Transport Encryption in MongoDB, all of the network traffi c of
MongoDB will be encrypted using TLS/SSL (Transport Layer Security/Secure Sockets
Layer). When enabled, both internal and external communication will be encrypted.
There is no possibility to do only one of them.

You can confi gure MongoDB to use SSL by enabling it and adding the certifi cate fi le:

1 net:
2 ssl:
3 mode: requireSSL
4 PEMKeyFile: /etc/ssl/mongodb.pem

12

To manage your databases, you as the DB admin would need good visibility into what
is going on. Remember that if a database is not available or not performing, you will be
the one under pressure so you want to know what is going on. If there is no monitoring
and trending system available, this should be the highest priority. In this chapter we
will summarize the most important metrics to keep an eye out for and why you should
monitor those.

4.1. Host metrics
Host metrics are equally important to MongoDB as they are for MySQL or any other
database. MongoDB is a database system, so it will behave in a large degree the same
as MySQL. High load, low IO and low CPU utilization? Your MySQL instinct will be right
here as well: there must be some sort of locking issue.

So in terms of host metrics, capture everything you would normally do for any other
database:

• CPU usage / load / cpusteal
• Memory usage
• IO
• Network

4.2. dbStats metrics
The most basic check you wish to perform on any MongoDB host is whether the service
is running and responding. But whether the service is up or down is not enough.
Alongside that check, you can fetch the database statistics to give you the most basic
metrics

Monitoring and Trending

1 my_mongodb_0:PRIMARY> use admin
2 switched to db admin
3 my_mongodb_0:PRIMARY> db.runCommand({ dbStats : 1 })
4 {
5 “db” : “admin”,
6 “collections” : 2,
7 “objects” : 2,
8 “avgObjSize” : 198,
9 “dataSize” : 396,
10 “storageSize” : 32768,
11 “numExtents” : 0,
12 “indexes” : 3,
13 “indexSize” : 49152,
14 “ok” : 1
15 }

13

It is important to switch to the admin database, as otherwise you will capture the stats
from the database that you are using. We can spot already here a couple of important
stats: the number of collections (like tables), objects, data/storage size and index size.
This is a good metric to keep an eye on the growth rate of your MongoDB cluster.

4.3. serverStatus metrics
The server status is comparable to the MySQL show global status command: it will
contain the most important stats from MongoDB. Depending on the storage engine
that you are using, this will contain the stats for WiredTiger, MongoRocks or TokuMX.

For example, if we wish to only see the replicaSet information we have to fi lter out the
remainder:

As you can see the fl exibility of JSON comes in handy here. Unlike MySQL you are not
bound by a predefi ned set of status variables. When enabled, the wiredTiger object

1 my_mongodb_0:PRIMARY> db.serverStatus({ wiredTiger:
0, asserts: 0, metrics: 0, tcmalloc: 0, locks: 0, op-
countersRepl: 0, opcounters: 0, network: 0, globalLock: 0,
extra_info: 0, connections: 0, storageEngine: 0})

2 {
3 “host” : “n2”,
4 “advisoryHostFQDNs” : [],
5 “version” : “3.2.6-1.0”,
6 “process” : “mongod”,
7 “pid” : NumberLong(12122),
8 “uptime” : 600,
9 “uptimeMillis” : NumberLong(599289),
10 “uptimeEstimate” : 576,
11 “localTime” : ISODate(“2016-06-18T11:13:09.080Z”),
12 “repl” : {
13 “hosts” : [
14 “10.10.32.11:27017”,
15 “10.10.32.12:27017”,
16 “10.10.32.13:27017”
17],
18 “setName” : “my_mongodb_0”,
19 “setVersion” : 1,
20 “ismaster” : true,
21 “secondary” : false,
22 “primary” : “10.10.32.11:27017”,
23 “me” : “10.10.32.11:27017”,
24 “electionId” : ObjectId(“7fffff

ff0000000000000001”),
25 “rbid” : 1522923277
26 },
27 “ok” : 1
28 }

14

is present here, while when using MongoRocks, we would have an additional rocksdb
object. You can fi nd the storage engine in use under the storageEngine object.

4.4. Oplog metrics
With MongoDB replication, the most important aspect is the oplog. As we described
in a blog post about MongoDB configuration, the oplog is comparable to the MySQL
binary log. It keeps a history of all transactions in this log fi le, but contrary to the
MySQL binary log, MongoDB only has one single collection where it stores them.
This collection is limited in size. This means that once it is full, old transactions will get
purged as new transactions come in. It will evict the oldest transaction fi rst, so the
method used here is FIFO (First In, First Out). Therefore the most important metric to
watch is the replication window: the duration of transactions kept in the oplog.

Why is this important? Suppose one of the secondary nodes loses network connectivity
with the primary, it will no longer replicate data from the primary. Once it comes back
online this secondary node has to catch up with already replicated transactions. It
will use the oplog for this purpose. If the secondary node went offl ine for too long, it
can’t use the oplog anymore and a full sync is necessary. A full sync, just like the SST in
Galera, is an expensive operation and you would want to avoid this.

Driver

Primary

Secondary

Secondary

Write
writeConcern:

{ w: 2 }
Response

Apply
Replicate

Replicate

Apply

1 mongo_replica_0:PRIMARY> db.getReplicationInfo()
2 {
3 “logSizeMB” : 1895.7751951217651,
4 “usedMB” : 0.01,
5 “timeDiff” : 11,
6 “timeDiffHours” : 0,

http://severalnines.com/blog/become-mongodb-dba-basics-configuration

15

As you can see, the time diff erence is already present in the output from the
getReplicationInfo function. You can choose to use either the timeDiff in seconds or
timeDiff Hours in hours here. A side note: this function is only available from the mongo
command line tool.

It is easy to replicate this function by retrieving the fi rst and last items from the oplog.
Making use of the MongoDB aggregate function in a one single query is tempting,
however the oplog does not have any indexes set on any of the fi elds. Running an
aggregate function on a collection without indexes would require a full collection scan,
which would become very slow in an oplog that has a couple of million entries.

Instead we are going to send two individual queries: fetch the fi rst record of the oplog
in forward and reverse order. As the oplog already is a sorted collection, we can
naturally sort on the reverse of the collection cheaply.

The overhead of both queries is very low and will not interfere with the functioning of
the oplog. In the example above, the replication window would be 91223 seconds (the
diff erence of 1476403762 and 1476312539).

Intuitively you may think it only makes sense to do this calculation on the primary node,
as this is the source for all write operations. However, MongoDB is a bit smarter than
just serving out the oplog to all secondaries. Even though the secondary nodes will
copy entries of the oplog from the primary, for joining members it will offl oad the delta
of transactions loading via secondaries if possible. Also secondary nodes may prefer to
fetch oplog entries from other secondaries with low latency, rather than fetching them
from a primary with high latency. So it would be better to perform this calculation on all
nodes in the cluster.

Another important metric is the replication lag. It suffi ces to connect to the primary and
retrieve this data using the replSetGetStatus command, as the primary keeps track of
the replication status of its secondaries.

A condensed version of this command is seen below:

7 “tFirst” : “Fri Jul 08 2016 10:56:01 GMT+0000
(UTC)”,

8 “tLast” : “Fri Jul 08 2016 10:56:12 GMT+0000 (UTC)”,
9 “now” : “Fri Jul 08 2016 12:38:36 GMT+0000 (UTC)”
10 }

1 mongo_replica_2:PRIMARY> use local
2 switched to db local
3 mongo_replica_2:PRIMARY> db.oplog.rs.fi nd().limit(1);
4 { “ts” : Timestamp(1476312539, 1), “h” : Number-

Long(“-3302015507277893447”), “v” : 2, “op” : “n”, “ns” :
“”, “o” : { “msg” : “initiating set” } }

5 mongo_replica_2:PRIMARY> db.oplog.rs.fi nd().sort({$natural:
-1}).limit(1);

6 { “ts” : Timestamp(1476403762, 1), “h” : Number-
Long(“3526317830277016106”), “v” : 2, “op” : “n”, “ns” :
“ycsb.usertable”, “o” : { “_id” : “user5864876345352853020”,

7 …
8 }

16

You can calculate the lag by simply subtracting the secondary optimeDate (or optime
timestamp) from the primary optimeDate. This will give you the replication lag in
seconds.

4.5. MongoDB locks
MongoDB does support Global, Database and Collection level locking and will also
report this in the serverStatus output:

1 my_mongodb_0:PRIMARY> db.runCommand({ replSetGetStatus: 1 }
)

2 {
3 …
4 “members” : [
5 {
6 “_id” : 0,
7 “name” : “10.10.32.11:27017”,
8 “stateStr” : “PRIMARY”,
9 “optime” : {
10 “ts” : Timestamp(1466247801, 5),
11 “t” : NumberLong(1)
12 },
13 “optimeDate” : ISODate(“2016-06-18T11:03:21Z”),
14 },
15 {
16 “_id” : 1,
17 “name” : “10.10.32.12:27017”,
18 “stateStr” : “SECONDARY”,
19 “optime” : {
20 “ts” : Timestamp(1466247801, 5),
21 “t” : NumberLong(1)
22 },
23 “optimeDate” : ISODate(“2016-06-18T11:03:21Z”),
24 },
25 {
26 “_id” : 2,
27 “name” : “10.10.32.13:27017”,
28 “stateStr” : “SECONDARY”,
29 “optime” : {
30 “ts” : Timestamp(1466247801, 5),
31 “t” : NumberLong(1)
32 },
33 “optimeDate” : ISODate(“2016-06-18T11:03:21Z”),
34 }
35],
36 “ok” : 1
37 }

17

In principle in MongoDB you should not see much locking happening as these locks
are comparable global, schema and table type of locks. The document level locking
is missing here as these locks are handled by the storage engine used. In the case of
MMAPv1 (< MongoDB v3.0) the locks will happen on database level.

1 mongo_replica_0:PRIMARY> db.serverStatus().locks
2 {
3 “Global” : {
4 “acquireCount” : {
5 “r” : NumberLong(2667294),
6 “w” : NumberLong(20),
7 “R” : NumberLong(1),
8 “W” : NumberLong(7)
9 },
10 “acquireWaitCount” : {
11 “r” : NumberLong(1),
12 “w” : NumberLong(1),
13 “W” : NumberLong(1)
14 },
15 “timeAcquiringMicros” : {
16 “r” : NumberLong(2101),
17 “w” : NumberLong(4443),
18 “W” : NumberLong(52)
19 }
20 },
21 “Database” : {
22 “acquireCount” : {
23 “r” : NumberLong(1333616),
24 “w” : NumberLong(8),
25 “R” : NumberLong(17),
26 “W” : NumberLong(12)
27 }
28 },
29 “Collection” : {
30 “acquireCount” : {
31 “r” : NumberLong(678231),
32 “w” : NumberLong(1)
33 }
34 },
35 “Metadata” : {
36 “acquireCount” : {
37 “w” : NumberLong(7)
38 }
39 },
40 “oplog” : {
41 “acquireCount” : {
42 “r” : NumberLong(678288),
43 “w” : NumberLong(8)
44 }
45 }
46 }

18

You should collect each and every one of these metrics as they might help you fi nd
performance issues outside the storage engines.

4.6. WiredTiger metrics

4.6.1. Locks and concurrency
As described in the previous section, the document level locking is handled by the
storage engine. In the case of WiredTiger, it has locks to prevent one thread from
writing to the same document as another thread. When a write occurs, a ticket is
created to perform the write operation, where the ticket is comparable to a thread.

The number of concurrent transactions are refl ected in the wiredTiger.
concurrentTransactions metric:

This metric is important because of two reasons: if you see a sudden increase in the
write.out tickets, there is probably a lot of document locking going on. Also if the read.
available or write.available metrics are nearing zero your threads are getting exhausted.
The result will be that new incoming requests are going to be queued.

4.6.2. Transactions
In contrary to the default MongoDB metrics, the WiredTiger output in serverStatus does
contain information about transactions.

1 mongo_replica_0:PRIMARY> db.serverStatus().wiredTiger.con-
currentTransactions

2 {
3 “write” : {
4 “out” : 0,
5 “available” : 128,
6 “totalTickets” : 128
7 },
8 “read” : {
9 “out” : 0,
10 “available” : 128,
11 “totalTickets” : 128
12 }
13 }

1 mongo_replica_0:PRIMARY> db.serverStatus().wiredTiger.trans-
action

2 {
3 “number of named snapshots created” : 0,
4 “number of named snapshots dropped” : 0,
5 “transaction begins” : 21,
6 “transaction checkpoint currently running” : 0,
7 “transaction checkpoint generation” : 4610,
8 “transaction checkpoint max time (msecs)” : 12,

19

Metrics to keep an eye on are the trends in begins, committed and rolled back.

At the same time you can extract the checkpoint max time, checkpoint min time and
checkpoint most recent time here. If the checkpointing time taken starts to increase
WiredTiger isn’t able to checkpoint the data as quickly as before. It would be best to
correlate this with disk statistics.

9 “transaction checkpoint min time (msecs)” : 0,
10 “transaction checkpoint most recent time (msecs)” : 0,
11 “transaction checkpoint total time (msecs)” : 6478,
12 “transaction checkpoints” : 4610,
13 “transaction failures due to cache overfl ow” : 0,
14 “transaction range of IDs currently pinned” : 1,
15 “transaction range of IDs currently pinned by a check-

point” : 0,
16 “transaction range of IDs currently pinned by named

snapshots” : 0,
17 “transaction sync calls” : 0,
18 “transactions committed” : 14,
19 “transactions rolled back” : 7
20 }

20

Backups in MongoDB aren’t that diff erent from MySQL backups.You have to start a
copy process, ship the fi les to a safe place and ensure the backup is consistent. The
consistency is obviously the biggest concern, as MongoDB doesn’t feature a transaction
mode that allows you to create a consistent snapshot. Obviously there are other ways to
ensure we make a consistent backup.

There are two categories of backups available for MongoDB: logical and physical
backups. The logical backups are basically data dumps from MongoDB, while the
physical backups are copies of the data on disk.

5.1. Logical backups
All logical backup methods will not make a consistent backup, not without putting a
global lock on the node you’re making a backup of. This is comparable to mysqldump
with MyISAM tables. This means it would be best to make a logical backup from a
secondary node and set a global lock to ensure consistency.

For MongoDB there is a mysqldump equivalent: mongodump. This command line tool
is shipped with every MongoDB installation and allows you to dump the contents of
your MongoDB node into a BSON formatted dump fi le. BSON is a binary variant of
JSON and this will not only keep the dump compact, but also improves recovery time.

5.2. Physical backups
For physical backups, there is no out of the box solution. Options here are to use the
existing LVM, ZFS and EBS snapshot solutions. For LVM and ZFS, the snapshotting will
freeze the fi le system in operation. However for EBS, a consistent snapshot can’t be
created unless writes have been stopped.

To do so, you have to fsync everything to disk and set a global lock:

Don’t forget to unlock after completing the EBS snapshot:

Backup and Recovery

1 my_mongodb_0:PRIMARY> use admin
2 switched to db admin
3 my_mongodb_0:PRIMARY> db.runCommand({fsync:1,lock:1});
4 {
5 “info” : “now locked against writes, use db.fsyncUn-

lock() to unlock”,
6 “seeAlso” : “http://dochub.mongodb.org/core/fsynccom-

mand”,
7 “ok” : 1
8 }

21

As MongoDB only checkpoints every 60 seconds, this means you will have to also
include the journals. If these journals are not on the same disk, your snapshot may not
be 100% consistent. This would be similar as making an LVM snapshot of a disk only
containing the MySQL data without the redo logs.

If you are using MongoRocks, you also have the possibility to make a physical copy of
all the data using the Strata backup tool. The Strata command line tool allows you to
create a full backup or incremental backup. The best part of the Strata backup is that
these physical fi les are queryable via mongo shell. This means you can utilize physical
copies of your data to load data into your data warehouse or big data systems.

5.3. Sharded MongoDB backups
As the sharded MongoDB cluster consists of multiple replicaSets, a confi g replicaSet
and Shard servers, it is very diffi cult to make a consistent backup. As every replicaSet is
decoupled from each other, it is almost impossible to snapshot everything at the same
time. Ideally a sharded MongoDB cluster should be frozen for a brief moment in time,
and then a consistent backup taken. However this strategy would cause global locks
and this means your clients will experience downtime.

The Percona Consistent Backup tool will take care of this problem: it will start all
backups simultaneously and keeps copying the oplog entries throughout the whole
process until the last node in the cluster is done.

5.4. Backup strategies
Ensure backups are being made, so check your backup on a regular interval (daily,
weekly). Make sure the size of the backups makes sense and the logs are clear from
errors. You could also check the integrity of the backup by extracting it and making a
couple of checks on data points or fi les that need to be present. Automation for this
process makes your life easier.

5.4.1. Off site backups
There are many reasons for shipping your backups to another location. The best known
reason may be (disaster) recovery, but other good reasons are keeping local copies for
testing or data loading to o ffl oad the production database.

You could send your backups, for instance, to another datacenter or Amazon S3
or Glacier. To automatically ship your backups to a second location, you could use
BitTorrent Sync. If you ship your backups to a less trusted location, you must store your
backups encrypted.

1 my_mongodb_0:PRIMARY> db.fsyncUnlock()
2 { “info” : “unlock completed”, “ok” : 1 }

https://github.com/facebookgo/rocks-strata
http://severalnines.com/blog/using-bittorrent-sync-transfer-database-backups-offsite

22

5.4.2. Backup encryption
Even if you are keeping your backups in your local datacenter, it is still a good practice
to encrypt them. Encrypting the backups will ensure nobody, unless they have the key,
will be able to read them. Especially backups made using Strata will be partly readable,
without the necessity to start up MongoDB. But also dumps via Mongodump and
fi lesystem snapshots will be partly readable. So consider MongoDB backups to be
insecure and always encrypt them. Storing them in a cloud even makes the necessity for
encryption bigger.

5.4.3. Recovery
In addition to the health checks, also try to restore a backup on a regular (monthly)
basis to verify if you can recover from a backup. This process includes extracting/
decrypting the backup, starting up a new instance and possibly starting replication from
the primary. This will give you a good indication whether your backups are in good
condition. If you don’t have a disaster recovery plan yet, make one and make sure these
procedures are part of it.

23

One of the cornerstones of MongoDB is that it is built with high availability and scaling
in mind. Scaling can be done either vertically (bigger hardware) or horizontally (more
nodes). Horizontal scaling is what MongoDB is good at, and it is not much more than
spreading the workload to multiple machines. In eff ect, we’re making use of multiple
low-cost commodity hardware boxes, rather than upgrading to a more expensive high
performance server.

MongoDB off ers both read- and write scaling, and we will uncover the diff erences of
these two strategies for you. Whether to choose read- or write scaling all depends on
the workload of your application: if your application tends to read more often than
it writes data you will probably want to make use of the read scaling capabilities of
MongoDB.

6.1. Read scaling
With read scaling, we will scale out our read capacity. If you have used MongoDB
before, you may be aware that actually all reads end up on the primary by default.
Regardless if your replicaSet contains nine nodes, your read requests still go to the
primary. Why was this done deliberately?

Scaling MongoDB

Client tier Database tier

Web/Application
Server

Requests

Users

Read/write

MongoDB
Primary

MongoDB
Secondary

MongoDB
Secondary

Replication

24

In principle, there are a few considerations to make before you start reading from
a secondary node directly. First of all: the replication is asynchronous, so not all
secondaries will give the same results if you read the same data at the same point in
time. Secondly: if you distribute read requests to all secondaries and use up too much
of their capacity, if one of them becomes unavailable, the other secondaries may not
be able to cope with the extra workload. Thirdly: on sharded clusters you should never
bypass the shard router, as data may be out-of-date or data may have been moved to
another shard. If you do use the shard router and set the read preference correctly, it
may still return incorrect data due to incomplete or terminated chunk migrations.

As you have seen these are serious considerations you should make before scaling out
your read queries on MongoDB. In general, unless your primary is not able to cope with
the read workload it is receiving, we would advise against reading from secondaries.
The price you pay for inconsistency is relatively high, compared to the benefi ts of
offl oading work from the master.

6.2. Reading from a secondary
There are two things that are necessary to make reading from a secondary possible: tell
the MongoDB client driver that you actually wish to read from a secondary (if possible)
and tell the MongoDB secondary server that it is okay to read from this node.

Client tier Database tier

Web/Application
Server

Requests

Users

Write

Read

MongoDB
Primary

MongoDB
Secondary

MongoDB
Secondary

Replication

25

6.2.1. Setting read preference
For the driver, all you have to do is set the read preference. When reading data you
simply set the read preference to read from a secondary. Let’s go over each and every
read preference and explain what it does:

primary Always read from the primary (default)

primaryPreferred Always read from the primary, read from secondary if the
primary is unavailable

secondary Always read from a secondary

secondaryPreferred Always read from a secondary, read from the primary if no
secondary is available

nearest Always read from the node with the lowest network latency

It is clear the default mode is the least preferred if you wish to scale out reads.
PrimaryPreferred is not much better, as in 99.999% of the time, it will pick the primary.
Still if the primary becomes unavailable you will have a fallback for read requests.

Secondary should work fi ne for scaling reads, but as you leave out the primary the
reads will never have a fallback if no secondary is available. SecondaryPreferred is
slightly better, but the reads will hit almost all of the time the secondaries, which still
causes an uneven spread of reads. Also if no secondaries are available, in most cases
there will be no longer a cluster and the primary will demote itself to a secondary. Only
when an arbiter is part of the cluster, the secondaryPreferred mode makes sense.

Nearest should always pick the node with the lowest network latency. Even though this
sounds great from an application perspective, this will not guarantee you get an even
spread in read operations. But it will work very well in multi-regions where latency is
high, and delays are noticeable. In such cases, reading from the nearest node means
your application will be able to serve out data with the minimum latency.

Driver

Data Center 1

Primary

Secondary

Read with Read Preference
 (default)

Driver

Data Center 2

Secondary

Read with Read Preference
 (nearest)

priority: 1 priority: 0

priority: 1

26

6.2.2. Reading from a secondary in a shard
It is also possible to read from a secondary node in MongoDB sharded clusters. The
MongoDB shard router (mongos) will obey the read preference set in the request and
forward the request to a secondary in the shard(s). This also means you will have to
enable reads from a secondary on all hosts in the sharded environment.

And as said earlier: an issue that may arise with reading from secondaries on a sharded
environment, is that it might be possible to receive incorrect data from a secondary.
Due to the migration of data between shards, data may be in transit from one shard
to another. Reading from a secondary may then return incomplete data, therefore we
would strongly recommend against performing secondary reads in a sharded cluster.

6.3. MongoDB write scaling (sharding)
The MongoDB sharding solution is similar to existing sharding frameworks for other
major database solutions. It makes use of a typical lookup solution, where the sharding
is defi ned in a shard-key and the ranges are stored inside a confi guration database.
MongoDB works with three components to fi nd the correct shard for your data.

A typical sharded MongoDB environment looks like this:

6.3.1. Sharding tier
The fi rst component used is the shard router called mongos. All read and write
operations must be sent to the shard router, making all shards act as a single database
for the client application. The shard router will route the queries to the appropriate
shards by consulting the Confi gserver.

The Confi gserver is a special replicaSet that keeps the confi guration of all shards in the
cluster. The Confi gserver contains information about shards, databases, collections,
shard keys and the distribution of chunks of data. Data gets partitioned by slicing
the total dataset into smaller chunks of data, where these chunks are defi ned by the
shard key. The shard key can be either range or hash defi ned. These chunks are then
distributed evenly over the total number of shards.

Mongos

Client tier Sharding tier

Web/Application
Server

Requests

Users

MongoDB MongodB

MongodB

Read/write Read/write

Read/write

Sharding tier

Shard 1
Primary

Shard 1
Secondary

Shard 1
Secondary

Shard 2
Primary

Shard 2
Secondary

Shard 2
Secondary

Replication

Replication

27

The router will know on which shard to place the data by fi nding the correct chunk
in the Confi gserver. If the router thinks the chunk is becoming too large, it will
automatically create a new chunk in the Confi gserver. The sharding metadata is stored
in the confi g database, and this database is accessible via the shard router as well.

Prior to MongoDB 3.2 the Confi gserver used to be a total of three individual MongoDB
nodes that were used to write the sharding metadata. In this setup the metadata is
written and read thrice, and diff erences in data between nodes means inconsistent
writes happened and will require manual intervention. If this happened, the balancer
would no longer perform shard migrations and the shard router was no longer able to
create new chunks.

6.3.2. Shard tier
Each replicaSet in a MongoDB sharded cluster is treated as an individual shard. Adding
a shard will increase the write capacity, but also increase the sharding complexity. Each
shard is an individual component in the cluster and there is no direct communication
between them. Shards don’t know anything about other shards in the cluster.

MongoDB distributes its data evenly by balancing the total number of chunks on each
shard. If the number of chunks is not spread evenly, a balancing process can be run to
migrate chunks from one shard to another.

On MongoDB 3.2 and older this balancing process typically gets started from a shard
router (mongos), that thinks the data is unbalanced. The shard router will acquire and
set a lock on the balancing process in the confi g database on the Confi gserver. This
lock is necessary as there may be multiple shard routers active inside the same cluster.

100M

mongos

25M

shard C

25M

shard D

25M

shard B

25M

shard A

Shard A Shard B Shard C

Migrate

28

To overcome this problem, starting from MongoDB 3.4 onwards, this process will be
started on the primary of the Confi gserver.

6.3.3. Managing shards
Shard management is really easy in MongoDB. You can add and remove shards online
and the MongoDB shard router will automatically adjust to what you tell it to. If you
wish to know more in depth about how best to manage shards, please read our blog
post about managing MongoDB shards.

https://severalnines.com/blog/become-mongodb-dba-sharding-ins-and-outs-part-2

29

In this whitepaper we have collected some of the best practices for running MongoDB
in production. More tips and tricks are available from our Become a MongoDB DBA
blog series and webinars. We would recommend reading the full blog series to learn
more about deploying, monitoring, managing and scaling MongoDB.

Conclusion

30

ClusterControl is the all-inclusive open source database management system for users
with mixed environments that removes the need for multiple management tools.
ClusterControl provides advanced deployment, management, monitoring, and scaling
functionality to get your MySQL, MongoDB, and PostgreSQL databases up-and-
running using proven methodologies that you can depend on to work. At the core
of ClusterControl is it’s automation functionality that let’s you automate many of the
database tasks you have to perform regularly like deploying new databases, adding and
scaling new nodes, running backups and upgrades, and more.

Severalnines provides automation and management software for database clusters. We
help companies deploy their databases in any environment, and manage all operational
aspects to achieve high-scale availability.

Severalnines’ products are used by developers and administrators of all skills levels to
provide the full ‘deploy, manage, monitor, scale’ database cycle, thus freeing them from
the complexity and learning curves that are typically associated with highly available
database clusters. Severalnines is often called the “anti-startup” as it is entirely self-
funded by its founders. The company has enabled over 12,000 deployments to date
via its popular product ClusterControl. Currently counting BT, Orange, Cisco, CNRS,
Technicolor, AVG, Ping Identity and Paytrail as customers. Severalnines is a private
company headquartered in Stockholm, Sweden with o ffi ces in Singapore, Japan and the
United States. To see who is using Severalnines today visit:

https://www.severalnines.com/company

About ClusterControl

About Severalnines

Deploy Manage Monitor Scale

https://www.severalnines.com/company

31

Watch the MongoDB Webinars
We have produced many hours of MongoDB webinar content,
some of which are in-depth topics that were discussed in this
whitepaper. All of our webinar replays are online and available
for viewing for free!

Watch Now

Become a MongoDB DBA Blog Series
Read the blog series that inspired the whitepaper! The Become
a MongoDB DBA blog series covers all you need to help
you deploy, monitor, manage and scale MongoDB in your
environment.

Read the Blogs

A Guide to Effi cient Database Infrastructure
Operations
Taking control of their data is every company’s number one
job. Database operations encompass a number of functions,
including the initial deployment of a solution, confi guration
management, performance monitoring, SLA management,
backups, patches, version upgrades and scaling.

Download whitepaper

Related Resources from
Severalnines

A Guide
to Efficient Database

Infrastructure Operations

https://severalnines.com/resources/webinars?categories=440
https://severalnines.com/blog?series=689
https://severalnines.com/resources/whitepapers#download_whitepaper/536

32

© 2017 Severalnines AB. All rights reserved. Severalnines and the Severalnines logo(s) are
trademarks of Severalnines AB. Other names may be trademarks of their respective owners.

Deploy Manage

Monitor Scale

	1. Introduction
	2. Choosing the right MongoDB version
	2.1. Topologies
	2.2. Storage engines

	3. Securing MongoDB
	3.1. Enable authentication
	3.2. Authorize users by roles
	3.3. Add a replication keyfile
	3.4. Does your application require public access?
	3.5. Enable firewall rules or security groups
	3.6. Enabling SSL

	4. Monitoring and Trending
	4.1. Host metrics
	4.2. dbStats metrics
	4.3. serverStatus metrics
	4.4. Oplog metrics
	4.5. MongoDB locks
	4.6. WiredTiger metrics
	4.6.1. Locks and concurrency
	4.6.2. Transactions

	5. Backup and Recovery
	5.1. Logical backups
	5.2. Physical backups
	5.3. Sharded MongoDB backups
	5.4. Backup strategies
	5.4.1. Offsite backups
	5.4.2. Backup encryption
	5.4.3. Recovery

	6. Scaling MongoDB
	6.1. Read scaling
	6.2. Reading from a secondary
	6.2.1. Setting read preference
	6.2.2. Reading from a secondary in a shard

	6.3. MongoDB write scaling (sharding)
	6.3.1. Sharding tier
	6.3.2. Shard tier
	6.3.3. Managing shards

	7. Conclusion
	8. About ClusterControl
	9. About Severalnines
	10. Related Resources from Severalnines

